The Upper Bound of the Edge Mostar Index with Respect to Bicyclic Graphs

نویسندگان

چکیده

Let G be a connected graph; the edge Mostar index Moe(G) of is defined as Moe(G)=∑e=uv∈E(G)|mu(e)−mv(e)|, where mu(e) and mv(e) denote number edges in that are closer to vertex u than v u, respectively. In this paper, we determine upper bound for all bicyclic graphs identify extremal achieve bound.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, we determined the extremal (maximal and minimal) unicyclic and bicyclic graphs with respect to Harary index. 2010 Mathematics Subject Classification: 05C90

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

On the Wiener Index of Some Edge Deleted Graphs

The sum of distances between all the pairs of vertices in a connected graph is known as the {it Wiener index} of the graph. In this paper, we obtain the Wiener index of edge complements of stars, complete subgraphs and cycles in $K_n$.

متن کامل

Trees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index∗

For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M1(G) = ∑ v∈V (G) dG(v) 2 where dG(v) is the degree of vertex v in G. The alternative expression for M1(G) is ∑ uv∈E(G)(dG(u)+dG(v)). Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant ∏∗ 1(G) = ∏ uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11112506